
COVER FE ATURE

37FEBRUARY 2012Published by the IEEE Computer Society0018-9162/12/$31.00 © 2012 IEEE 

capabilities and in exposing the exaggerated marketing 
hype of many commercial DDBSs. However, since its 
initial formal proof,7 CAP has become increasingly mis-
understood and misapplied, potentially causing significant 
harm. In particular, many designers incorrectly conclude 
that the theorem imposes certain restrictions on a DDBS 
during normal system operation, and therefore imple-
ment an unnecessarily limited system. In reality, CAP only 
posits limitations in the face of certain types of failures, 
and does not constrain any system capabilities during 
normal operation. 

Nonetheless, the fundamental tradeoffs that inhibit 
DDBSs’ capabilities during normal operation have influ-
enced the different design choices of well-known systems. 
In fact, one particular tradeoff—between consistency and 
latency—arguably has been more influential on DDBS 
design than the CAP tradeoffs. Both sets of tradeoffs are 
important; unifying CAP and the consistency/latency trade-
off into a single formulation—PACELC—can accordingly 
lead to a deeper understanding of modern DDBS design.

CAP IS FOR FAILURES
CAP basically states that in building a DDBS, designers 

can choose two of three desirable properties: consistency 
(C), availability (A), and partition tolerance (P). Therefore, 
only CA systems (consistent and highly available, but not 
partition-tolerant), CP systems (consistent and partition-
tolerant, but not highly available), and AP systems (highly 
available and partition-tolerant, but not consistent) are 
possible.

Many modern DDBSs—including SimpleDB/Dynamo, 
Cassandra, Voldemort, Sherpa/PNUTS, and Riak—do not 

A lthough research on distributed database sys-
tems began decades ago, it was not until recently 
that industry began to make extensive use of 
DDBSs. There are two primary drivers for this 

trend. First, modern applications require increased data 
and transactional throughput, which has led to a desire 
for elastically scalable database systems. Second, the 
increased globalization and pace of business has led to 
the requirement to place data near clients who are spread 
across the world. Examples of DDBSs built in the past 10 
years that attempt to achieve high scalability or world-
wide accessibility (or both) include SimpleDB/Dynamo/
DynamoDB,1 Cassandra,2 Voldemort (http://project- 
voldemort.com), Sherpa/PNUTS,3 Riak (http://wiki.basho.
com), HBase/BigTable,4 MongoDB (www.mongodb.org), 
VoltDB/H-Store,5 and Megastore.6 

DDBSs are complex, and building them is difficult. 
Therefore, any tool that helps designers understand the 
tradeoffs involved in creating a DDBS is beneficial. The 
CAP theorem, in particular, has been extremely useful in 
helping designers to reason through a proposed system’s 

The CAP theorem’s impact on modern dis-
tributed database system design is more 
limited than is often perceived. Another 
tradeoff—between consistency and latency 
—has had a more direct influence on sev-
eral well-known DDBSs. A proposed new 
formulation, PACELC, unifies this tradeoff 
with CAP.

Daniel J. Abadi, Yale University

Consistency  
Tradeoffs in  
Modern Distributed 
Database System 
Design

r2aba.indd   37 1/25/12   11:34 AM



COVER FE ATURE

COMPUTER 38

by default guarantee consistency, as defined by CAP. (Al-
though consistency of some of these systems became 
adjustable after the initial versions were released, the focus 
here is on their original design.) In their proof of CAP, Seth 
Gilbert and Nancy Lynch7 used the definition of atomic/
linearizable consistency: “There must exist a total order 
on all operations such that each operation looks as if it 
were completed at a single instant. This is equivalent to 
requiring requests of the distributed shared memory to 
act as if they were executing on a single node, responding 
to operations one at a time.” 

Given that early DDBS research focused on consistent 
systems, it is natural to assume that CAP was a major influ-
ence on modern system architects, who, during the period 
after the theorem was proved, built an increasing number 

of systems implementing reduced consistency models. 
The reasoning behind this assumption is that, because any 
DDBS must be tolerant of network partitions, according to 
CAP, the system must choose between high availability and 
consistency. For mission-critical applications in which high 
availability is extremely important, it has no choice but to 
sacrifice consistency.

However, this logic is flawed and not consistent with 
what CAP actually says. It is not merely the partition toler-
ance that necessitates a tradeoff between consistency and 
availability; rather, it is the combination of

 partition tolerance and
 the existence of a network partition itself. 

The theorem simply states that a network partition 
causes the system to have to decide between reducing 
availability or consistency. The probability of a network 
partition is highly dependent on the various details of the 
system implementation: Is it distributed over a wide area 
network (WAN), or just a local cluster? What is the quality 
of the hardware? What processes are in place to ensure 
that changes to network configuration parameters are 
performed carefully? What is the level of redundancy? 
Nonetheless, in general, network partitions are somewhat 
rare, and are often less frequent than other serious types 
of failure events in DDBSs.8

As CAP imposes no system restrictions in the base-
line case, it is wrong to assume that DDBSs that reduce 
consistency in the absence of any partitions are doing so 
due to CAP-based decision-making. In fact, CAP allows 

the system to make the complete set of ACID (atomicity, 
consistency, isolation, and durability) guarantees alongside 
high availability when there are no partitions. Therefore, 
the theorem does not completely justify the default con-
figuration of DDBSs that reduce consistency (and usually 
several other ACID guarantees).

CONSISTENCY/LATENCY TRADEOFF
To understand modern DDBS design, it is important 

to realize the context in which these systems were built. 
Amazon originally designed Dynamo to serve data to the 
core services in its e-commerce platform (for example, the 
shopping cart). Facebook constructed Cassandra to power 
its Inbox Search feature. LinkedIn created Voldemort to 
handle online updates from various write-intensive fea-
tures on its website. Yahoo built PNUTS to store user data 
that can be read or written to on every webpage view, to 
store listings data for Yahoo’s shopping pages, and to store 
data to serve its social networking applications. Use cases 
similar to Amazon’s motivated Riak. 

In each case, the system typically serves data for web-
pages constructed on the fly and shipped to an active 
website user, and receives online updates. Studies indi-
cate that latency is a critical factor in online interactions: 
an increase as small as 100 ms can dramatically reduce 
the probability that a customer will continue to interact or 
return in the future.9

Unfortunately, there is a fundamental tradeoff between 
consistency, availability, and latency. (Note that availability 
and latency are arguably the same thing: an unavailable 
system essentially provides extremely high latency. For pur-
poses of this discussion, I consider systems with latencies 
larger than a typical request timeout, such as a few seconds, 
as unavailable, and latencies smaller than a request timeout, 
but still approaching hundreds of milliseconds, as “high 
latency.” However, I will eventually drop this distinction and 
allow the low-latency requirement to subsume both cases. 
Therefore, the tradeoff is really just between consistency 
and latency, as this section’s title suggests.)

This tradeoff exists even when there are no network 
partitions, and thus is completely separate from the trade-
offs CAP describes. Nonetheless, it is a critical factor in the 
design of the above-mentioned systems. (It is irrelevant to 
this discussion whether or not a single machine failure is 
treated like a special type of network partition.)

The reason for the tradeoff is that a high availability 
requirement implies that the system must replicate data. 
If the system runs for long enough, at least one compo-
nent in the system will eventually fail. When this failure 
occurs, all data that component controlled will become 
unavailable unless the system replicated another version 
of the data prior to the failure. Therefore, the possibility 
of failure, even in the absence of the failure itself, implies 
that the availability requirement requires some degree of 

It is wrong to assume that DDBSs that 
reduce consistency in the absence of  
any partitions are doing so due to CAP-
based decision-making.

r2aba.indd   38 1/25/12   11:34 AM









39FEBRUARY 2012

data replication during normal system operation. (Note the 
important difference between this tradeoff and the CAP 
tradeoffs: while the occurrence of a failure causes the CAP 
tradeoffs, the failure possibility itself results in this tradeoff.)

To achieve the highest possible levels of availability, a 
DDBS must replicate data over a WAN to protect against 
the failure of an entire datacenter due, for example, to a 
hurricane, terrorist attack, or, as in the famous April 2011 
Amazon EC2 cloud outage, a single network configuration 
error. The five reduced-consistency systems mentioned 
above are designed for extremely high availability and 
usually for replication over a WAN. 

DATA REPLICATION
As soon as a DDBS replicates data, a tradeoff between 

consistency and latency arises. This occurs because there 
are only three alternatives for implementing data replica-
tion: the system sends data updates to all replicas at the 
same time, to an agreed-upon master node first, or to a 
single (arbitrary) node first. The system can implement 
each of these cases in various ways; however, each imple-
mentation comes with a consistency/latency tradeoff. 

(1) Data updates sent to all replicas at the  
same time

If updates do not first pass through a preprocessing 
layer or some other agreement protocol, replica diver-
gence—a clear lack of consistency—could ensue (assuming 
multiple updates to the system are submitted concurrently, 
for example, from different clients), as each replica might 
choose a different order in which to apply the updates. 
(Even if all updates are commutative—such that each rep-
lica will eventually become consistent, despite the fact 
that the replicas could possibly apply updates in different 
orders—Gilbert and Lynch’s strict definition of consis-
tency7 still does not hold. However, generalized Paxos10 

can provide consistent replication in a single round-trip.)
On the other hand, if updates first pass through a pre-

processing layer or all nodes involved in the write use an 
agreement protocol to decide on the order of operations, 
then it is possible to ensure that all replicas will agree on 
the order in which to process the updates. However, this 
leads to several sources of increased latency. In the case of 
the agreement protocol, the protocol itself is the additional 
source of latency. 

In the case of the preprocessor, there are two sources 
of latency. First, routing updates through an additional 
system component (the preprocessor) increases latency. 
Second, the preprocessor consists of either multiple 
machines or a single machine. In the former case, an agree-
ment protocol to decide on operation ordering is needed 
across the machines. In the latter case, the system forces 
all updates, no matter where they are initiated—potentially 
anywhere in the world—to route all the way to the single 

preprocessor first, even if another data replica is nearer to 
the update initiation location. 

(2) Data updates sent to an agreed-upon  
location first

I will refer to this agreed-upon location as a “master 
node” (different data items can have different master 
nodes). This master node resolves all requests to update 
the data item, and the order that it chooses to perform 
these updates determines the order in which all replicas 
perform the updates. After the master node resolves up-
dates, it replicates them to all replica locations. 

There are three replication options:

 a. The replication is synchronous: the master node 
waits until all updates have made it to the replica(s). 
This ensures that the replicas remain consistent, but 
synchronous actions across independent entities, 
especially over a WAN, increase latency due to the re-
quirement to pass messages between these entities and 
the fact that latency is limited by the slowest entity.

 b. The replication is asynchronous: the system treats 
the update as if it were completed before it has been 
replicated. Typically, the update has at least made it to 
stable storage somewhere before the update’s initiator 
learns that it has completed (in case the master node 
fails), but there are no guarantees that the system has 
propagated the update. The consistency/latency trade-
off in this case depends on how the system deals with 
reads:

  i. If the system routes all reads to the master node  
  and serves them from there, then there is no reduc- 
  tion in consistency. However, there are two latency  
  problems with this approach:

  1. Even if there is a replica close to the read- 
  request initiator, the system must still route  
  the request to the master node, which po- 
  tentially could be physically much farther  
  away. 

  2. If the master node is overloaded with other  
  requests or has failed, there is no option to  
  serve the read from a different node. Rather,  
  the request must wait for the master node  
  to become free or recover. In other words,  
  lack of load balancing options increases  
  latency potential.

As soon as a DDBS replicates data, a 
tradeoff between consistency and  
latency arises.

r2aba.indd   39 1/25/12   11:34 AM





COVER FE ATURE

COMPUTER 40

  ii. If the system can serve reads from any node,  
  read latency is much better, but this can also  
  result in inconsistent reads of the same data item,  
  as different locations have different versions  
  of a data item while the system is still propagat- 
  ing updates, and it could send a read to any of  
  these locations. Although the level of reduced  
  consistency can be bounded by keeping track  
  of update sequence numbers and using them to  
  implement sequential/timeline consistency or  
  read-your-writes consistency, these are none- 
  theless reduced consistency options. Further- 
  more, write latency can be high if the master  
  node for a write operation is geographically  
  distant from the write requester.

 c. A combination of (a) and (b) is possible: the system 
sends updates to some subset of replicas synchro-
nously, and the rest asynchronously. The consistency/

latency tradeoff in this case again is determined by 
how the system deals with reads: 

  i. If it routes reads to at least one node that has  
  been synchronously updated—for example,  
  when R + W > N in a quorum protocol, where R  
  is the number of nodes involved in a synchro- 
  nous read, W is the number of nodes involved  
  in a synchronous write, and N is the number of  
  replicas—then consistency can be preserved.  
  However, the latency problems of (a), (b)(i)(1),  
  and (b)(i)(2) are all present, though to somewhat  
  lesser degrees, as the number of nodes involved  
  in the synchronization is smaller, and more than  
  one node can potentially serve read requests. 

  ii. If it is possible for the system to serve reads from  
  nodes that have not been synchronously  
  updated, for example, when R + W ≤ N, then  
  inconsistent reads are possible, as in (b)(ii).

  Technically, simply using a quorum protocol is not 
sufficient to guarantee consistency to the level defined 
by Gilbert and Lynch. However, the protocol additions 
needed to ensure complete consistency11 are not rel-
evant here. Even without these additions, latency is 
already inherent in the quorum protocol. 

(3) Data updates sent to an arbitrary location 
first

The system performs updates at that location, and then 
propagates them to the other replicas. The difference be-

tween this case and (2) is that the location the system 
sends updates to for a particular data item is not always 
the same. For example, two different updates for a par-
ticular data item can be initiated at two different locations 
simultaneously. 

The consistency/latency tradeoff again depends on two 
options:

 a. If replication is synchronous, then the latency prob-
lems of (2)(a) are present. Additionally, the system can 
incur extra latency to detect and resolve cases of si-
multaneous updates to the same data item initiated at 
two different locations.

 b. If replication is asynchronous, then consistency prob-
lems similar to (1) and (2)(b) are present.

TRADEOFF EXAMPLES
No matter how a DDBS replicates data, clearly it must 

trade off consistency and latency. For carefully controlled 
replication across short distances, reasonable options 
such as (2)(a) exist because network communication la-
tency is small in local datacenters; however, for replication 
over a WAN, there is no way around the consistency/la-
tency tradeoff.

To more fully understand the tradeoff, it is helpful to 
consider how four DDBSs designed for extremely high 
availability—Dynamo, Cassandra, PNUTS, and Riak— 
replicate data. As these systems were designed for low-
latency interactions with active Web clients, each one 
sacrifices consistency for improved latency. 

Dynamo, Cassandra, and Riak use a combination of 
(2)(c) and (3). In particular, the system sends updates to 
the same node and then propagates these synchronously 
to W other nodes—that is, case (2)(c). The system sends 
reads synchronously to R nodes, with R + W typically 
being set to a number less than or equal to N, leading to 
the possibility of inconsistent reads. However, the system 
does not always send updates to the same node for a par-
ticular data item—for example, this can happen in various 
failure cases, or due to rerouting by a load balancer. This 
leads to the situation described in (3) and potentially more 
substantial consistency shortfalls. PNUTS uses option  
(2)(b)(ii), achieving excellent latency at reduced 
consistency. 

A recent study by Jun Rao, Eugene Shekita, and Sandeep 
Tata12 provides further evidence of the consistency/latency 
tradeoff in these systems’ baseline implementation. The 
researchers experimentally evaluated two options in Cas-
sandra’s consistency/latency tradeoff. The first option, 
“weak reads,” allows the system to service reads from any 
replica, even if that replica has not received all outstand-
ing updates for a data item. The second option, “quorum 
reads,” requires the system to explicitly check for incon-
sistency across multiple replicas before reading data. The 

For data replication over a WAN, there is 
no way around the consistency/latency 
tradeoff.

r2aba.indd   40 1/25/12   11:34 AM







Ignoring the consistency/latency 
tradeoff of replicated systems is a  
major oversight, as it is present at all 
times during system operation.

41FEBRUARY 2012

second option clearly increases consistency at the cost of 
additional latency relative to the first option. The differ-
ence in latency between these two options can be a factor 
of four or more. 

Another study by Hiroshi Wada and colleagues13 seems 
to contradict this result. These researchers found that 
requesting a consistent read in SimpleDB does not signifi-
cantly increase latency relative to the default (potentially 
inconsistent) read option. However, the researchers per-
formed these experiments in a single Amazon region (US 
West), and they speculate that SimpleDB uses master-slave 
replication, which is possible to implement with a modest 
latency cost if the replication occurs over a short dis-
tance. In particular, Wada and colleagues concluded that  
SimpleDB forces all consistent reads to go to the master in 
charge of writing the same data. As long as the read request 
comes from a location that is physically close to the master, 
and as long as the master is not overloaded, then the ad-
ditional latency of the consistent read is not visible (both 
these conditions were true in their experiments). 

If SimpleDB had replicated data across Amazon regions, 
and the read request came from a different region than the 
master’s location, the latency cost of the consistent read 
would have been more apparent. Even without replication 
across regions (SimpleDB does not currently support rep-
lication across regions), official Amazon documentation 
warns users of increased latency and reduced throughput 
for consistent reads.

All four DDBSs allow users to change the default pa-
rameters to exchange increased consistency for worse 
latency—for example, by making R + W more than N in 
quorum-type systems. Nonetheless, the consistency/la-
tency tradeoff occurs during normal system operation, 
even in the absence of network partitions. This tradeoff is 
magnified if there is data replication over a WAN. The obvi-
ous conclusion is that reduced consistency is attributable 
to runtime latency, not CAP.

PNUTS offers the clearest evidence that CAP is not a 
major reason for reduced consistency levels in these sys-
tems. In PNUTS, a master node owns each data item. The 
system routes updates to that item to the master node, and 
then propagates these updates asynchronously to repli-
cas over a WAN. PNUTS can serve reads from any replica, 
which puts the system into category (2)(b)(ii): it reduces 
consistency to achieve better latency. However, in the case 
of a network partition, where the master node becomes 
unavailable inside a minority partition, the system by de-
fault makes the data item unavailable for updates. In other 
words, the PNUTS default configuration is actually CP: in 
the case of a partition, the system chooses consistency 
over availability to avoid the problem of resolving conflict-
ing updates initiated at different master nodes. 

Therefore, the choice to reduce consistency in the base-
line case is more obviously attributable to the continuous 

consistency/latency tradeoff than to the consistency/avail-
ability tradeoff in CAP that only occurs upon a network 
partition. Of course, PNUTS’s lack of consistency in the 
baseline case is also helpful in the network partition case, 
as data mastered in an unavailable partition is still acces-
sible for reads.

CAP arguably has more influence on the other three 
systems. Dynamo, Cassandra, and Riak switch more fully 
to data replication option (3) in the event of a network 
partition and deal with the resulting consistency prob-
lems using special reconciliation code that runs upon 
detection of replica divergence. It is therefore reason-
able to assume that these systems were designed with 
the possibility of a network partition in mind. Because 
these are AP systems, the reconciliation code and abil-

ity to switch to (3) were built into the code from the 
beginning. However, once that code was there, it is con-
venient to reuse some of that consistency flexibility to 
choose a point in the baseline consistency/latency trade- 
off as well. This argument is more logical than claims 
that these systems’ designers chose to reduce consistency  
entirely due to CAP (ignoring the latency factor).

In conclusion, CAP is only one of the two major reasons 
that modern DDBSs reduce consistency. Ignoring the con-
sistency/latency tradeoff of replicated systems is a major 
oversight, as it is present at all times during system opera-
tion, whereas CAP is only relevant in the arguably rare case 
of a network partition. In fact, the former tradeoff could be 
more influential because it has a more direct effect on the 
systems’ baseline operations.

PACELC
A more complete portrayal of the space of potential 

consistency tradeoffs for DDBSs can be achieved by rewrit-
ing CAP as PACELC (pronounced “pass-elk”): if there is a 
partition (P), how does the system trade off availability and 
consistency (A and C); else (E), when the system is running 
normally in the absence of partitions, how does the system 
trade off latency (L) and consistency (C)? 

Note that the latency/consistency tradeoff (ELC) only 
applies to systems that replicate data. Otherwise, the 
system suffers from availability issues upon any type of 
failure or overloaded node. Because such issues are just 
instances of extreme latency, the latency part of the ELC 
tradeoff can incorporate the choice of whether or not to 
replicate data.

r2aba.indd   41 1/25/12   11:35 AM



COVER FE ATURE

COMPUTER 42

The default versions of Dynamo, Cassandra, and Riak 
are PA/EL systems: if a partition occurs, they give up con-
sistency for availability, and under normal operation they 
give up consistency for lower latency. Giving up both Cs 
in PACELC makes the design simpler; once a system is 
configured to handle inconsistencies, it makes sense to 
give up consistency for both availability and lower latency. 
However, these systems have user-adjustable settings to 
alter the ELC tradeoff—for example, by increasing R + W,  
they gain more consistency at the expense of latency (al-
though they cannot achieve full consistency as defined by 
Gilbert and Lynch, even if R + W > N).

Fully ACID systems such as VoltDB/H-Store and Mega-
store are PC/EC: they refuse to give up consistency, and 
will pay the availability and latency costs to achieve it. 
BigTable and related systems such as HBase are also 
PC/EC.

MongoDB can be classified as a PA/EC system. In the 
baseline case, the system guarantees reads and writes to 
be consistent. However, MongoDB uses data replication 
option (2), and if the master node fails or is partitioned 
from the rest of the system, it stores all writes that have 
been sent to the master node but not yet replicated in a 
local rollback directory. Meanwhile, the rest of the system 
elects a new master to remain available for reads and 
writes. Therefore, the state of the old master and the 
state of the new master become inconsistent until the 
system repairs the failure and uses the rollback directory 
to reconcile the states, which is a manual process today. 
(Technically, when a partition occurs, MongoDB is not 
available according to the CAP definition of availability, 
as the minority partition is not available. However, in the 
context of PACELC, because a partition causes more con-
sistency issues than availability issues, MongoDB can be 
classified as a PA/EC system.)

PNUTS is a PC/EL system. In normal operation, it 
gives up consistency for latency; however, if a partition 
occurs, it trades availability for consistency. This is admit-
tedly somewhat confusing: according to PACELC, PNUTS  
appears to get more consistent upon a network partition. 
However, PC/EL should not be interpreted in this way. PC 
does not indicate that the system is fully consistent; rather 
it indicates that the system does not reduce consistency 
beyond the baseline consistency level when a network 
partition occurs—instead, it reduces availability.

T he tradeoffs involved in building distributed data-
base systems are complex, and neither CAP nor 
PACELC can explain them all. Nonetheless, incorpo-

rating the consistency/latency tradeoff into modern DDBS 
design considerations is important enough to warrant 
bringing the tradeoff closer to the forefront of architec-
tural discussions. 

Acknowledgments
This article went through several iterations and modifica-
tions thanks to extremely helpful and detailed feedback from 
Samuel Madden, Andy Pavlo, Evan Jones, Adam Marcus, 
Daniel Weinreb, and three anonymous reviewers.

References 
 1. G. DeCandia et al., “Dynamo: Amazon’s Highly Available 

Key-Value Store,” Proc. 21st ACM SIGOPS Symp. Operating 
Systems Principles (SOSP 07), ACM, 2007, pp. 205-220.

 2. A. Lakshman and P. Malik, “Cassandra: Structured Storage 
System on a P2P Network,” Proc. 28th ACM Symp. Prin-
ciples of Distributed Computing (PODC 09), ACM, 2009, 
article no. 5; doi:10.1145/1582716.1582722. 

 3. B.F. Cooper et al., “PNUTS: Yahoo!’s Hosted Data Serving 
Platform,” Proc. VLDB Endowment (VLDB 08), ACM, 2008, 
pp. 1277-1288. 

 4. F. Chang et al., “Bigtable: A Distributed Storage System for 
Structured Data,” Proc. 7th Usenix Symp. Operating Sys-
tems Design and Implementation (OSDI 06), Usenix, 2006, 
pp. 205-218. 

 5. M. Stonebraker et al., “The End of an Architectural Era (It’s 
Time for a Complete Rewrite),” Proc. VLDB Endowment 
(VLDB 07), ACM, 2007, pp. 1150-1160. 

 6. J. Baker et al., “Megastore: Providing Scalable, Highly Avail-
able Storage for Interactive Services,” Proc. 5th Biennial 
Conf. Innovative Data Systems Research (CIDR 11), ACM, 
2011, pp. 223-234. 

 7. S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Fea-
sibility of Consistent, Available, Partition-Tolerant Web 
Services,” ACM SIGACT News, June 2002, pp. 51-59. 

 8. M. Stonebraker, “Errors in Database Systems, Even-
tual Consistency, and the CAP Theorem,” blog, 
Comm. ACM, 5 Apr. 2010; http://cacm.acm.org/blogs/
blog-cacm/83396-errors-in-database-systems-eventual-
consistency-and-the-cap-theorem.

 9. J. Brutlag, “Speed Matters for Google Web Search,” unpub-
lished paper, 22 June 2009, Google; http://code.google.com/
speed/files/delayexp.pdf.

 10. L. Lamport, Generalized Consensus and Paxos, tech. report 
MSR-TR-2005-33, Microsoft Research, 2005; ftp://ftp. 
research.microsoft.com/pub/tr/TR-2005-33.pdf.

 11. H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing Memory Ro-
bustly in Message-Passing Systems,” JACM, Jan. 1995, pp. 
124-142.

 12. J. Rao, E.J. Shekita, and S. Tata, “Using Paxos to Build a 
Scalable, Consistent, and Highly Available Datastore,” Proc. 
VLDB Endowment (VLDB 11), ACM, 2011, pp. 243-254.

 13. H. Wada et al., “Data Consistency Properties and the 
Trade-offs in Commercial Cloud Storage: The Consum-
ers’ Perspective,” Proc. 5th Biennial Conf. Innovative Data 
Systems Research (CIDR 11), ACM, 2011, pp. 134-143. 

Daniel J. Abadi is an assistant professor in the Department 
of Computer Science at Yale University. His research inter-
ests include database system architecture, cloud computing, 
and scalable systems. Abadi received a PhD in computer sci-
ence from Massachusetts Institute of Technology. Contact 
him at dna@cs.yale.edu; he blogs at http://dbmsmusings.
blogspot.com and tweets at @daniel_abadi.

r2aba.indd   42 1/25/12   11:35 AM


