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Abstract

This paper describes a method for developing dimensional
models from traditional Entity Relationship models. This can
be used to design data warehouses and data marts based on
enterprise data models.  The first step of the method involves
classifying entities in the data model into a number of catego-
ries.  The second step involves identifying hierarchies that
exist in the model.  The final step involves collapsing these
hierarchies and aggregating transaction data to form dimen-
sional models.  A number of design alternatives are pre-
sented, including a flat schema, a terraced schema, a star
schema and a snowflake schema. We also define a new type
of schema called a star cluster schema.  This is a restricted
form of snowflake schema, which minimises the number of
tables while avoiding overlap between different dimensional
hierarchies. Individual schemas can be collected together to
form constellations or galaxies.  We illustrate the method
using a simple example.

1. INTRODUCTION

The Problem Addressed

Data warehousing is currently one of the most im-
portant applications of database technology in practice.
The total size of the data warehousing market, includ-
ing software and hardware, was estimated to be US$8
billion in 1998 (Sen and Jacob, 1998). A significant
proportion of IT budgets in most organisations is de-
voted to data warehousing applications.  High levels of
user satisfaction and return on investment have been

reported in the literature for such applications (Graham
et al, 1996).

One of the most important issues in data warehous-
ing is how to design appropriate database structures to
support end user queries (Pokorny, 1999). Existing
approaches to data warehouse design advocate a “first
principles” approach, where the structure of the data
warehouse is derived directly from user query require-
ments.  In this paper, we describe a method for de-
signing data warehouses and data marts based on an
enterprise data model represented in Entity Relation-
ship form.  This provides a more structured approach to
data warehouse design, and ensures that structure of the
data warehouse reflects the underlying semantic struc-
ture of the data.  It also leads to a more flexible ware-
house design, which is resilient to changes in analysis
requirements over time.

Data Warehouse Architecture

In the early 90’s, data warehousing was proposed as
a general purpose solution to the problem of satisfying
organisational management information needs.  A data
warehouse is a database which provides a single con-
sistent source of management information for reporting
and analysis across the organisation (Inmon, 1993;
Love, 1994).  Data warehousing requires a major shift
in the relationship between IT departments and users,
in that it advocates a “self-service” model rather than
the traditional report-driven model.  In a data ware-
housing environment, end users access data directly
using user friendly query tools rather than relying on
reports generated by IT specialists.  This helps to re-
duce user reliance on IT staff to satisfy information
needs.

Data warehousing is based on a supply chain meta-
phor.  The data “product” is obtained from data “sup-
pliers” (operational systems or external sources) and is
temporarily stored in a central data “warehouse”.  The
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data is then delivered via data “marts” to data “con-
sumers” (end users). Figure 1 shows a generic archi-
tecture for a data warehouse (rectangles indicate data
stores, while circles indicate processes).
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Figure 1.  Data Warehouse Architecture

The architecture consists of the following compo-
nents:
• Operational systems: these are systems which record

details of business transactions.  This is where most
of the data required for decision support is pro-
duced.

• External sources: data warehouses often incorporate
data from external sources  (e.g. census data, eco-
nomic data) to support analysis

• Extract processes: these processes “stock” the data
warehouse with data on a regular basis (daily,
weekly, monthly).  Data is extracted from different
sources, consolidated and reconciled together and
stored in a consistent format.  This corresponds to a
procurement function.

• Central data warehouse: this acts as the central
source of decision support data across the enter-
prise.  This forms the “wholesale level” of the data
warehouse environment and is used to supply data
marts.  The central data warehouse is usually im-
plemented using a traditional relational DBMS.

• Load processes: these processes distribute data from
the central data warehouse to the data marts.  This
corresponds to a distribution function.

• Data marts: These represent the “retail outlets” of
the data warehouse which provide data in usable
form for analysis by end users.  Data marts are usu-
ally tailored to the needs of a specific group of users
or decision making task.  They may be “real” (stored
as actual tables populated from the central data
warehouse) or virtual (defined as views on the cen-
tral data warehouse).  Data marts may be imple-
mented using traditional relational DBMS or OLAP
tools.

• End users: write queries and analyses against data
stored in data marts using “user friendly” query
tools.

Dimensional Modelling

According to Kimball (1996, 1997), the data ware-
housing (OLAP1) environment is profoundly different
from the operational (OLTP2) environment and tech-
niques used to design operational databases are inap-
propriate for designing data warehouses.  For this rea-
son, Kimball proposed a new technique for data mod-
elling specifically for designing data warehouses,
which he called dimensional modelling. The method
was developed based on observations of practice, and
in particular, of data vendors who are in the business of
providing data in “user-friendly” form to their custom-
ers.  It is not based on any theory, and has never been
empirically tested, but has clearly been very successful
in practice. Dimensional modelling has been adopted as
the predominant approach to designing data ware-
houses and data marts in practice, and represents an
important contribution to the discipline of data model-
ling and database design.

Objectives of this Paper

Kimball argues that modelling in a data warehousing
environment is radically different from modelling in an
operational (transaction processing) environment, and
that you must forget all you know about Entity Rela-
tionship modelling.

“Entity relation models are a disaster for querying because
they cannot be understood by users and cannot be navigated
usefully by DBMS software.  Entity relation models cannot
be used as the basis for enterprise data warehouses”

In this paper, we argue that Entity Relationship
modelling is equally applicable in data warehousing
context as in an operational context and provides a use-
ful basis for designing both data warehouses and data
marts.

2. DIMENSIONAL MODELLING
CONCEPTS

Objectives of Dimensional Modelling

There are two major differences between operational
databases and data warehouses:
• End user access: In a data warehousing environ-

ment, users write queries directly against the data-
base structure, whereas in an operational environ-
ment, users generally only access the database
through an application system “front end”.  In a tra-
ditional application system, the structure of the da-
tabase is invisible to the user.

• Read-only: data warehouses are effectively read
only databasesusers can retrieve and analyse data,

                                                          
1
 OLAP = On-Line Analytical Processing

2
 OLTP = On-Line Transaction Processing
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but cannot update it.  Data stored in the data ware-
house is updated via batch extract processes.
The problem with using traditional database design

techniques in a data warehousing environment is that it
results in database structures which are too complex for
end users to understand and use. A typical operational
database consists of hundreds of tables linked by a
complex web of relationships.  Even quite simple que-
ries will require multi-table joins, which are error-
prone and beyond the capabilities of non-technical us-
ers.  This is not a problem in transaction processing
systems because the complexity of the database struc-
ture is hidden from the user by a layer of software.

A major reason for the complexity of operational
databases is the use of normalisation. Normalisation
tends to multiply the number of tables required, as it
requires splitting out functionally dependent attributes
into separate tables.  The objective of normalisation is
to minimise data redundancy (Codd, 1970).  This
maximises update efficiency because each change can
be made in a single place, but tends to penalise re-
trieval (Kent, 1978). Redundancy is less of an issue in a
data warehousing environment because data is not up-
dated on-line.

The objective of dimensional modelling is to pro-
duce database structures that are easy for end users to
understand and write queries against.  A secondary
objective is to maximise the efficiency of queries.  It
achieves these objectives primarily by minimising the
number of tables and relationships between them.  This
reduces the complexity of the database and minimises
the number of joins required in user queries.

Star Schemas

The basic building block used in dimensional mod-
elling is the star schema.  A star schema consists of one
large central table called the fact table, and a number of
smaller tables called dimension tables which radiate
out from the central table (Figure 2).

Fact Table

Dimension 
Table 1

Dimension 
Table 2

Dimension 
Table 4

Dimension 
Table 3

Figure 2.  Star Schema (Generic Structure)

The fact table forms the “centre” of the star, while
the dimension tables form the “points” of the star. A
star schema may have any number of dimensions.

• The fact table contains measurements (e.g. price of
products sold, quantity of products sold) which may
be aggregated in various ways.

• The dimension tables provide the basis for aggre-
gating the measurements in the fact table.

• The fact table is linked to all the dimension tables
by one-to-many relationships

• The primary key of the fact table is the concatena-
tion of the primary keys of all the dimension tables.
A more concrete example of a star schema is shown

in Figure 3.  In this example, sales data may be ana-
lysed by product, customer, retail outlet and date.

Sales Summary

Product

Customer

Date

Retail 
Outlet

Figure 3.  Star Schema Example

Dimension tables are often highly denormalised ta-
bles, and generally consist of embedded hierarchies.
For example, Customer, which represents a single di-
mension in the star schema above, consists of three
independent hierarchies, when they are normalised out
(Figure 4).
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State code 
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Country code 
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Figure 4. Embedded Hierarchies in Customer
Dimension

The advantage of using star schemas to represent
data is that it reduces the number of tables in the data-
base and the number of relationships between them and
therefore the number of joins required in user queries.
Kimball (1996) claims that use of star schemas to de-
sign data warehouses results in 80% of queries being
single table browses. Star schemas may either be im-
plemented in specialist OLAP tools, or using traditional
relational DBMS.
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Star Schema Design Approach

Kimball’s design method is a “first principles” ap-
proach, which is based on analysis of user query re-
quirements.  It begins by identifying the relevant
“facts” that need to be aggregated, the dimensional
attributes to aggregate by, and forming star schemas
based on these.  It results in a data warehouse design
which is a set of discrete star schemas.  However there
are a number of practical problems with this approach:
• User analysis requirements are highly unpredictable

and subject to change over time, which provides an
unstable basis for design

• It can lead to incorrect designs if the designer does
not understand the underlying relationships in the
data

• It results in loss of information through premature
aggregation, which limits the ways in which data can
be analysed

• The approach is presented by examples rather than
via an explicit design procedure
The approach described in this paper overcomes

these problems by using an enterprise data model as the
basis for data warehouse design.  This makes use of the
relationships in the data which have been already been
documented, and provides a much more structured ap-
proach to developing a data warehouse design.

3. DATA WAREHOUSE DESIGN
APPROACH

We argue that different design principles should be
used for designing the central data warehouse and data
marts:

Central Data Warehouse Design

This represents the “wholesale” level of the data
warehouse, which is used to supply data marts with
data.  The most important requirement of the central
data warehouse is that it provides a consistent, inte-
grated and flexible source of data.  We argue that tra-
ditional data modelling techniques (Entity Relationship
models and normalisation) are most appropriate at this
level.  A normalised database design ensures maximum
consistency and integrity of the data.  It also provides
the most flexible data structurenew data can be easily
added to the warehouse in a modular way, and the da-
tabase structure will support any analysis requirements.
Aggregation or denormalisation at this stage will lose
information and restrict the kind of analyses which can
be carried out. An enterprise data model, if one exists,
should be used as the basis for structuring the central
data warehouse.

Data Mart Design

Data marts represent the “retail” level of the data
warehouse, where data is accessed directly by end us-
ers.  Data is extracted from the central data warehouse
into data marts to support particular analysis require-
ments.  The most important requirement at this level is
that data is structured in a way that is easy for users to
understand and use.  For this reason, dimensional mod-
elling techniques are most appropriate at this level.
This ensures that data structures are as simple as possi-
ble in order to simplify user queries.  The next section
describes an approach for developing dimensional
models from an enterprise data model.

4. FROM ENTITY RELATIONSHIP
MODELS TO DIMENSIONAL
MODELS

This section describes a method for developing di-
mensional models from Entity Relationship models.
This can be used as a basis for designing data marts
based on an enterprise data model.

Example Data Model

A simple example is used to illustrate the design ap-
proach.  Figure 5 shows an operational data model for a
sales application. The highlighted attributes indicate
the primary keys of each entity.
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Figure 5. Example Data Model

Such a model is typical of data models that are used
by operational (OLTP) systems. Such a model is well
suited to a transaction processing environment.  It con-
tains no redundancy, thus maximising efficiency of
updates, and explicitly shows all the data and the rela-
tionships between them.  Unfortunately most decision
makers would find this schema incomprehensible. Even
quite simple queries require multi-table joins and com-
plex subqueries. As a result, end users will be depend-
ent on technical specialists to write queries for them.
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Step 1.  Classify Entities

The first step in producing a dimensional model
from an Entity Relationship model is to classify the
entities into three categories:

Transaction Entities

Transaction entities record details about particular
events that occur in the businessfor example, orders,
insurance claims, salary payments and hotel bookings.
Invariably, it is these events that decision makers want
to understand and analyse. The key characteristics of a
transaction entity are:
• It describes an event that happens at a point in time
• It contains measurements or quantities that may be

summarised e.g. dollar amounts, weights, volumes.
For example, an insurance claim records a particular

business event and (among other things) the amount
claimed.  Transaction entities are the most important
entities in a data warehouse, and form the basis for
constructing fact tables in star schemas. Not all trans-
action entities will be of interest for decision support,
so user input will be required in identifying which
transactions are important.

Component Entities

A component entity is one which is directly related
to a transaction entity via a one-to-many relationship.
Component entities define the details or “components”
of each business transaction.  Component entities an-
swer the “who”, “what”, “when”, “where”, “how” and
“why” of a business event.  For example, a sales trans-
action may be defined by a number of components:
• Customer: who made the purchase
• Product: what was sold
• Location: where it was sold
• Period: when it was sold

An important component of any transaction is
timehistorical analysis is an important part of any
data warehouse.  Component entities form the basis for
constructing dimension tables in star schemas.

Classification Entities

Classification entities are entities which are related
to component entities by a chain of one-to-many rela-
tionshipsthat is, they are functionally dependent on a
component entity (directly or transitively).  Classifica-
tion entities represent hierarchies embedded in the data
model, which may be collapsed into component entities
to form dimension tables in a star schema.

Figure 6 shows the classification of the entities in
the example data model.  In the diagram,
• Black entities represent Transaction entities
• Grey entities indicate Component entities
• White entities indicate Classification entities

Product 
Type Product

Period Sale

Customer
Customer 

Type

Region

Location 
Type

State

Location

Sale 
Item

Sale 
Fee

Fee 
Type

Sale

Posted

Figure 6.  Entity Classifications

Resolving Ambiguities

In some cases, entities may fit into multiple catego-
ries.  We therefore define a precedence hierarchy for
resolving such ambiguities:

1. Transaction entity (highest precedence)
2. Classification entity
3. Component entity (lowest precedence)

For example, if an entity can be classified as either a
classification entity or a component entity, it should be
classified as a classification entity.  In practice, some
entities will not fit into any of these categories.  Such
entities do not fit the hierarchical structure of a dimen-
sional model, and cannot be included in star schemas.
This is where real world data sometimes does not fit the
star schema “mould”.

Step 2.  Identify Hierarchies

Hierarchies are an extremely important concept in
dimensional modelling, and form the primary basis for
deriving dimensional models from Entity Relationship
models. As discussed previously, most dimension ta-
bles in star schemas contain embedded hierarchies.  A
hierarchy in an Entity Relationship model is any se-
quence of entities joined together by one-to-many rela-
tionships, all aligned in the same direction. Figure 7
shows a hierarchy extracted from the example data
model, with State at the top and Sale Item at the bot-
tom.

Loc_Id

Posted_Date
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Regn_Id

State_Id

Loc_Type_Id

Regn_Id

Loc_Name Regn_Name

State_Id

State_Name

Sale_Id

Sale_Date

Sale Region StateLocation

Prod_Id

Sale_Id

Sale 
Item

Discount_Amt

Qty

Unit Price

Figure 7 Example of Hierarchy

In hierarchical terminology:
• State is the “parent” of Region
• Region is the “child” of State
• Sale Item, Sale, Location and Region are all “de-

scendants” of State
• Sale, Location, Region and State are all “ancestors”

of Sale Item
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Maximal Hierarchy

A hierarchy is called maximal if it cannot be ex-
tended upwards or downwards by including another
entity. In all, there are 14 maximal hierarchies in the
example data model:
• Customer Type-Customer-Sale-Sale Fee
• Customer Type-Customer-Sale-Sale Item
• Fee Type-Sale Fee
• Location Type-Location-Sale-Sale Fee
• Location Type-Location-Sale-Sale Item
• Period (posted)-Sale-Sale Fee
• Period (posted)-Sale-Sale Item
• Period (sale)-Sale-Sale Fee
• Period (sale)-Sale-Sale Item
• Product Type-Product-Sale Item
• State-Region-Customer-Sale-Sale Fee
• State-Region-Customer-Sale-Sale Item
• State-Region-Location-Sale-Sale Fee
• State-Region-Location-Sale-Sale Item

An entity is called minimal if it is at the bottom of a
maximal hierarchy and maximal if it is at the top of
one. Minimal entities can be easily identified as they
are entities with no one-to-many relationships (or
“leaf” entities in hierarchical terminology), while
maximal entities are entities with no many to one rela-
tionships (or “root” entities). In the example data
model there are
• Two minimal entities: Sale Item and Sale Fee
• Six maximal entities: Period, Customer_Type, State,

Location Type, Product Type and Fee Type.

Step 3.  Produce Dimensional Models

Operators For Producing Dimensional Models

We use two operators to produce dimensional mod-
els from Entity Relationship models.

Operator 1: Collapse Hierarchy

Higher level entities can be “collapsed” into lower
level entities within hierarchies. Figure 8 shows the
State entity being collapsed into the Region entity.  The
Region entity contains its original attributes plus the
attributes of the collapsed table. This introduces redun-
dancy in the form of a transitive dependency, which is
a violation to third normal form (Codd, 1970).  Col-
lapsing a hierarchy is therefore a form of denormalisa-
tion (Tonkin, 1991).

Loc_Id

Posted_Date

Cust_Id

Loc_Id

Regn_Id

State_Id

Loc_Type_Id

Regn_Id

Loc_Name Regn_Name

State_Id

State_Name

Sale_Id

Sale_Date

Sale Region StateLocation

Prod_Id

Sale_Id

Sale 
Item

Discount

Qty

Value State_Name

collapse

Figure 8. State Entity “collapsed”  into Region

Figure 9 shows Region being collapsed into Loca-
tion. We can continue doing this until we reach the
bottom of the hierarchy, and end up with a single table
(Sale Item).

Loc_Id

Posted_Date

Cust_Id

Loc_Id

Regn_Id

State_Id

Loc_Type_Id

Regn_Id

Loc_Name Regn_Name

Sale_Id
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Prod_Id

Sale_Id

Sale 
Item

Discount

Qty

Value State_Name

collapse

State_Id

Regn_Name

State_Name

Figure 9. Region Entity “collapsed”  into Location

Operator 2: Aggregation

The aggregation operator can be applied to a trans-
action entity to create a new entity containing summa-
rised data. A subset of attributes is chosen from the
source entity to aggregate (the aggregation attributes)
and another subset of attributes chosen to aggregate by
(the grouping attributes). Aggregation attributes must
be numerical quantities.

For example, we could apply the aggregation op-
erator to the Sale Item entity to create a new entity
called Product Summary as in Figure 10. This aggre-
gated entity shows for each product the total sales
amount (quantity*price), the average quantity per order
and average price per item on a daily basis.  The aggre-
gation attributes are quantity and price, while the
grouping attributes are Product ID and Date.  The key
of this entity is the combination of the attributes used to
aggregate by (grouping attributes). Note that aggrega-
tion loses information: we cannot reconstruct the de-
tails of individual sale items from the product summary
table.

Prod_Id

Sale_Id

Sale 
Item

Prod_Id

Product 
Summary

Date

Date

Qty

Total Sales ($)

Average Quantity

Average PriceUnit Price

Figure 10. Aggregation Operator

Dimensional Design Options

There is a wide range of options for producing di-
mensional models from an Entity Relationship model.
These include:
• Flat schema
• Terraced schema
• Star schema
• Snowflake schema
• Star cluster schema
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Each of these options represent different trade-offs
between complexity and redundancy.  Here we discuss
how the operators previously defined may be used to
produce different dimensional models.

Option 1: Flat Schema

A flat schema is the simplest schema possible with-
out losing information. This is formed by collapsing all
entities in the data model down into the minimal enti-
ties.  This minimises the number of tables in the data-
base and therefore the possibility that joins will be
needed in user queries.  In a flat schema we end up
with one table for each minimal entity in the original
data model. Figure 11 shows the flat schema which
results from the example data model.
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Figure 11. Flat Schema

Such a schema is similar to the “flat files” used by
analysts using statistical packages such as SAS and
SPSS. Note that this structure does not lose any infor-
mation from the original data model. It contains redun-
dancy, in the form of transitive and partial dependen-
cies, but does not involve any aggregation. One prob-
lem with a flat schema is that it may lead to aggregation
errors when there are hierarchical relationships be-
tween transaction entities. When we collapse numerical
amounts from higher level transaction entities into an-
other they will be repeated. In the example data model,
if a Sale consists of three Sale Items, the discount
amount will be stored in three different rows in the Sale
Item table. Adding the discount amounts together then
results in double-counting (or in this case, triple

counting).  Another problem with flat schemas is that
they tend to result in tables with large numbers of at-
tributes, which may be unwieldy.  While the number of
tables (system complexity) is minimised, the complexity
of each table (element complexity) is greatly increased.

Option 2: Terraced Schema

A terraced schema is formed by collapsing entities
down maximal hierarchies, but stopping when they
reach a transaction entity.  This results in a single table
for each transaction entity in the data model. Figure 12
shows the terraced schema that results from the exam-
ple data model. This schema is less likely to cause
problems for an inexperienced user, because the sepa-
ration between levels of transaction entities is explicitly
shown.
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Figure 12. Terraced Schema

Option 3: Star Schema

A star schema can be easily derived from an Entity
Relationship model. Each star schema is formed in the
following way:
• A fact table is formed for each transaction entity.

The key of the table is the combination of the keys
of its associated component entities.

• A dimension table is formed for each component
entity, by collapsing hierarchically related classifi-
cation entities into it.

• Where hierarchical relationships exist between
transaction entities, the child entity inherits all di-
mensions (and key attributes) from the parent entity.
This provides the ability to “drill down” between
transaction levels.
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• Numerical attributes within transaction entities
should be aggregated by key attributes (dimensions).
The aggregation attributes and functions used de-
pend on the application.
Figure 13 shows the star schema that results from

the Sale transaction entity.  This star schema has four
dimensions, each of which contains embedded hierar-
chies.  The aggregated fact is Discount amount.

Cust_Id

Cust_Id

Loc_Id

Cust_Type_Name

State_Id

Cust_Type_Id

Cust_Regn_Id

Cust_Name

Regn_Name

State_Name

Sale_Date

Yr

Qtr

Period Sale

Customer

Date

Sum(Discount_Amt)Fiscal_Yr

Mth Posted_Date

Sale 

Posted 

Loc_Id

Loc_Type_Name

Loc_Type_Id

Loc_Regn_Id

Loc_Name

Location

State_Id

Regn_Name

State_Name

Figure 13. Sale Star Schema

Figure 14 shows the star schema which results from
the Sale Item transaction entity.  This star schema has
five dimensions.  This includes four dimensions from
its “parent” transaction entity (Sale) and one of its own
(Product).  The aggregated facts are quantity and item
cost (quantity * price).

Prod_Id

Prod_Name

Cust_Id
Prod_Type_Name

Prod_Type_Id

Cust_Type_Name

State_Id

Cust_Type_Id

Cust_Regn_Id

Cust_Name

Regn_Name

State_Name

Yr

Qtr

Product

Period

CustomerProd_Id

Sale 
Item

Date

Fiscal_Yr

Mth

Sum_of_ItemCost

Sum_of_Qty

Sale 

Posted 

Loc_Id

Loc_Type_Name

Loc_Type_Id

Loc_Regn_Id

Loc_Name

Location

State_Id

Regn_Name

State_Name

Cust_Id

Loc_Id

Sale_Date

Posted_Date

Figure 14. Sale Item Star Schema

A separate star schema is produced for each trans-
action table in the original data model.

Constellation Schema

Instead of a number of discrete star schemas, the ex-
ample data model can be transformed into a constella-
tion schema.  A constellation schema consists of a set
of star schemas with hierarchically linked fact tables.
The links between the various fact tables provide the

ability to “drill down” between levels of detail (e.g.
from Sale to Sale Item).  The constellation schema
which results from the example data model is shown in
Figure 15links between fact tables are shown in bold.
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Prod_Name

Cust_Id
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Loc_Id

Prod_Type_Name

Prod_Type_Id

Cust_Type_Name
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Cust_Name

Regn_Name
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Sale 
Fee
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Fee_Type_Name

Fee_Type_Id

Fee 
Type

Sale 

Posted 

Loc_Id

Loc_Type_Name

Loc_Type_Id

Loc_Regn_Id

Loc_Name
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Regn_Name

State_Name

Cust_Id

Loc_Id

Sale_Date

Posted_Date

Cust_Id

Loc_Id

Sale_Date

Posted_Date

Figure 15. Sales Constellation Schema

Galaxy Schema

More generally, a set of star schemas or constella-
tions can be combined together to form a galaxy.  A
galaxy is of a collection of star schemas with shared
dimensions.  Unlike a constellation schema, the fact
tables in a galaxy do not need to be directly related.

Option 4: Snowflake Schema

In a star schema, hierarchies in the original data
model are collapsed or denormalised to form dimen-
sion tables.  Each dimension table may contain multiple
independent hierarchies.  A snowflake schema is a star
schema with all hierarchies explicitly shown. A snow-
flake schema can be formed from a star schema by ex-
panding out (normalising) the hierarchies in each di-
mension. Alternatively, a snowflake schema can be
produced directly from an Entity Relationship model
by the following procedure:
• A fact table is formed for each transaction entity.

The key of the table is the combination of the keys
of the associated component entities.

• Each component entity becomes a dimension table.
• Where hierarchical relationships exist between

transaction entities, the child entity inherits all rela-
tionships to component entities (and key attributes)
from the parent entity.

• Numerical attributes within transaction entities
should be aggregated by the key attributes. The at-
tributes and functions used depend on the applica-
tion.
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Figure 16 shows the snowflake schema which results
from the Sale transaction entity.

Cust_Id

Loc-Id

SUM (Discount)

Cust_Type_Id

Cust_Type_Name

Regn_Id

State_Id

Cust_Type_Id

Cust_Regn_Id

Cust_Name

Regn_Name

State_Id

State_Name

Cust-Id

Sale_Date

Yr

Qtr
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Customer Customer 
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Region State

Date

Fiscal_Yr

Mth

Posted_Date

Sale 

Posted 

Loc_Id Loc_Type_Id

Loc_Type_Name

Loc_Type_Id

Loc_Regn_Id

Loc_Name

Location 
Type

Location

Figure 16.  Sale Snowflake Schema

Option 5: Star Cluster Schema

Kimball (1996) argues that “snowflaking” is unde-
sirable, because it adds complexity to the schema and
requires extra joins. Clearly, expanding all hierarchies
defeats the purpose of producing simple, user friendly
database designsin the example above, it more than
doubles the number of tables in the schema. In this pa-
per, we argue that neither a “pure” star schema (fully
collapsed hierarchies) nor a “pure” snowflake schema
(fully expanded hierarchies) results in the best solution.
As in many design problems, the optimal solution is a
balance between two extremes.

The problem with fully collapsing hierarchies occurs
when hierarchies overlap, leading to redundancy be-
tween dimensions when they are collapsed. This can
result in confusion for users, increased complexity in
extract processes and inconsistent results from queries
if hierarchies become inconsistent.  For these reasons,
we require that dimensions should be orthogonal.

Overlapping dimensions can be identified via
“forks” in hierarchies.  A fork occurs when an entity
acts as a “parent” in two different dimensional hierar-
chies.   This results in the entity and all of its ancestors
being collapsed into two separate dimension tables.
Fork entities can be identified as classification entities
with multiple one-to-many relationships. The exception
to this rule occurs when the hierarchy converges again
lower downDampney (1996) calls this a commuting
loop.

In the example data model, a fork occurs at the Re-
gion entity.  Region is a parent of Location and Cus-
tomer, which are both components of the Sale transac-
tion.  In the star schema representation, State and Re-
gion would be included in both the Location and Cus-
tomer dimensions when the hierarchies are collapsed.
This results in overlap between the dimensions.

Sale

Customer Customer 
Type

Region

Location 
Type

State

Location

Customer 
Dimension

Location 
Dimension

Overlap

Figure 17.  Intersecting Hierarchies in Example
Data Model

We define a star cluster schema as one which has
the minimal number of tables while avoiding overlap
between dimensions.  It is a star schema which is se-
lectively “snowflaked” to separate out hierarchical
segments or subdimensions which are shared between
different dimensions.  Subdimensions effectively repre-
sent the “highest common factor” between dimensions.

A star cluster schema may be produced from an En-
tity Relationship model using the following procedure.
Each star cluster is formed by:
• A fact table is formed for each transaction entity.

The key of the table is the combination of the keys
of the associated component entities.

• Classification entities should be collapsed down
their hierarchies until they reach either a fork entity
or a component entity.  If a fork is reached, a sub-
dimension table should be formed.  The subdimen-
sion table will consist of the fork entity plus all its
ancestors.  Collapsing should begin again after the
fork entity.  When a component entity is reached, a
dimension table should be formed.

• Where hierarchical relationships exist between
transaction entities, the child entity should inherit all
dimensions (and key attributes) from the parent en-
tity.

• Numerical attributes within transaction entities
should be aggregated by the key attributes (dimen-
sions). The attributes and functions used depend on
the application.
Figure 18 shows the star cluster schema that results

from the model fragment of Figure 17.

Cust_Id

Loc-Id

SUM (Discount)

Cust_Type_Name

Regn_Id

State_Id

Cust_Type_Id

Cust_Regn_Id

Cust_Name

Regn_Name

State_Name

Cust-Id

Sale_Date
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Customer

Region

Posted_Date

Loc_Id

Loc_Type_Name

Loc_Type_Id

Loc_Regn_Id

Loc_Name

Location

FACT TABLE

DIMENSION TABLE

SUB-DIMENSION

DIMENSION TABLE

Figure 18.  Star Cluster Schema
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Figure 19 shows how entities in the original data
model were clustered to form the star cluster schema.
The overlap between hierarchies has now been re-
moved.

Cust_Id

Loc-Id

SUM (Discount)

Cust_Type_Id

Cust_Type_Name

Regn_Id

State_Id

Cust_Type_Id

Cust_Regn_Id

Cust_Name

Regn_Name
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Sale_Date
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Region State

Posted_Date

Loc_Id Loc_Type_Id

Loc_Type_Name

Loc_Type_Id

Loc_Regn_Id

Loc_Name

Location 
Type

Location

Location 
Dimension

Region 
Sub-dimension

Customer 
Dimension

Figure 19.  Revised Clustering

If required, views may be used to reconstruct a star
schema from a star cluster schema. This gives the best
of both worlds: the simplicity of a star schema while
preserving consistency between dimensions.  As with
star schemas, star clusters may be combined together to
form constellations or galaxies.

Step 4. Evaluation and Refinement

In practice, dimensional modelling is an iterative
process.  The clustering procedure described in Step 3
is useful for producing a first cut design, but this will
need to be refined to produce the final data mart de-
sign.  Most of these modifications have to do with fur-
ther simplifying the model and dealing with non-
hierarchical patterns in the data.

Combining Fact Tables

Fact tables with the same primary keys (i.e. the same
dimensions) should be combined.  This reduces the
number of star schemas and facilitates comparison be-
tween related facts (e.g. budget and actual figures).

Combining Dimension Tables

Creating dimension tables for each component entity
often results in a large number of dimension tables.  To
simplify the data mart structure, related dimensions
should be consolidated together into a single dimension
table.

Many to Many Relationships

Most of the complexities which arise in converting a
traditional Entity Relationship model to a dimensional
model result from many-to-many relationships or inter-
section entities.  Many-to-many relationships cause
problems in dimensional modelling because they repre-

sent a “break” in the hierarchical chain, and cannot be
collapsed.  There are a number of options for dealing
with many-to-many relationships:

(a) Ignore the intersection entity (eliminate it from
the data mart)

(b) Convert the many-to-many relationship to a one-
to-many relationship, by defining a “primary”
relationship

(c) Include it as a many-to-many relationship in the
data martsuch entities may be useful to expert
analysts but will not be amenable to analysis
using an OLAP tool.

For example, in the model below, each client may be
involved in a number of industries. The intersection
entity Client Industry breaks the hierarchical chain and
cannot be collapsed into Client.

Industry Type Industry Class Industry
Client 
Industry

Client

Figure 20. Multiple Classification

The options are (a) to exclude the industry hierar-
chy, (b) convert it to a one-to-many relationship or (c)
include it as a many-to-many relationship.

Industry Client Industry Client

Industry Client

major 
industry

(c)

(b)

Figure 21.  Design Options

Handling Subtypes

Supertype/subtype relationships can be converted to
a hierarchical structure by removing the subtypes and
creating a classification entity to distinguish between
subtypes.  This can then be converted to a dimensional
model in a straightforward manner.

Vehicle
Vehicle Type

Vehicle

Car

Truck

Figure 22.  Conversion of Subtypes to
Hierarchical Form



D. Moody, M. Kortink  5- 11

5. CONCLUSION

Summary of the Method

We have described a method for developing data
warehouse and data mart designs from an enterprise
data model. The method has now been applied in a
wide range of industries, including manufacturing,
health, insurance and banking.  The method has
evolved considerably as a result of experiences in
practice.  The steps of the method are:
1. Develop Enterprise Data Model (if one doesn’t

exist already)
2. Design Central Data Warehouse: this will be

closely based on the enterprise data model, but will
be a subset of the model which is relevant for deci-
sion support purposes.  A staged approach is rec-
ommended for implementing the central data
warehouse, starting with the most important sub-
ject areas.

3. Classify Entities: classify entities in the central
data warehouse model as either transaction, com-
ponent or classification entities.

4. Identify Hierarchies: identify the hierarchies which
exist in the data model

5. Design Data Marts: develop star cluster schemas
for each transaction entity in the central data ware-
house model.  Each star cluster will consist of a
fact table and a number of dimension and subdi-
mension tables.  This minimises the number of ta-
bles while avoiding overlap between dimensions.
The separate star clusters may be combined to-
gether to form constellations or galaxies.

Design Options

We have identified a range of options for developing
data marts to support end user queries from an enter-
prise data model.  These options represent different
trade-offs between the number of tables (complexity)
and redundancy of data (Figure 23).

Flat Schema

Terraced Schema

Star Schema

Star Cluster Schema

Snowflake Schema

Increased 
Complexity

Increased 
Redundancy

Figure 23. Design Trade-offs

Implications for Data Warehouse Design
Practice

The advantages of this approach are:
• It provides a more structured approach to develop-

ing dimensional models than working from first
principles

• It ensures that the data marts and the central data
warehouse reflect the underlying relationships in the
data

• Developing data warehouse and data mart designs
based on a common enterprise data model simplifies
extract and load processes

• An existing enterprise data model provides a useful
basis for identifying information requirements in a
bottom up mannerbased on what data exists in the
enterprise.  This can be usefully combined with
Kimball’s (1996) top-down analysis approach.

• An enterprise data model provides a more stable ba-
sis for design than user query requirements, which
are unpredictable and subject to frequent change

• It ensures that the central data warehouse is flexible
enough to support the widest possible range of
analysis requirements, by storing data at the level of
individual transactions. Aggregation of data at this
level reduces the granularity of data in the data
warehouse, which limits the types of analyses which
are possible.

• It maximises the integrity of data stored in the cen-
tral data warehouse
While the approach is not entirely mechanical, it

provides much more guidance to designers of data
warehouses and data marts than previous approaches.
Careful analysis is still required to identify the entities
in the enterprise data model which are relevant for de-
cision making and classifying them. However once this
has been done, the development of a dimensional
model can take place in a relatively straightforward
manner. Using an Entity Relationship model of the data
provides a much better starting point for developing
dimensional models than starting from scratch, and can
help avoid many of the pitfalls faced by inexperienced
designers.

Federated Data Warehouse Architecture

Use of this approach also supports the development
of independent but consistent data warehouses based on
a common enterprise data model (federated architec-
ture).  The enterprise data model can be used to ensure
the consistency of data definitions between the different
warehouses, enabling data to be compared and com-
bined between them.  It also allows use of common
extract processes.  This may be a more feasible option
than a single centralised data warehouse in large and
diverse organisations.
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